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Surface codes [1] have excellent threshold performance and are highly feasible since 
they have local and small stabilizer generators. They are expected to be utilized in 
fault-tolerant quantum computation (FTQC). However, the realization of FTQC requires 
many resources. To realize universal FTQC, continuous unitary gates will be 
decomposed and approximated by a finite set of quantum gates called a universal gate 
set [2], which significantly increases the depth of the circuit. Defect braiding [3] and 
lattice surgery [4] have been proposed as methods to realize universal gate sets on 
surface codes, but using these methods increases the execution time of each gate 
compared to the uncoded case. To reduce these overheads, optimization of FTQC 
quantum circuits is crucial. Several practical optimizations of defect braiding quantum 
circuits have been proposed [5,6]. It is helpful to formulate the optimization problem 
and show the computational complexity to achieve further optimization. This allows 
us to estimate the optimization problem's cost and clarify the compiler's requirements.
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For example, a simple quantum circuit is shown in (a). A defect braiding quantum circuit to 
realize (a) is given by (b). This study deals with the optimization of a circuit like (c) (called a 
1D defect braiding quantum circuit) in which the 3D defect braiding circuit is mapped onto 
a 2D plane, and the qubits are arranged in one dimension, ignoring the direction of the CX 
gates for the sake of simplicity.

Defect braiding operation realizes a logical gate 𝐶𝑋(𝐷, &𝐷) between 
two defect pair qubits 𝐷, &𝐷.
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Hardness Result

Variable gadget  𝑥!
Clause gadgets 𝑋! ∨ 𝑋" ∨ X#

Since Min-Braiding is NP-complete, the problem of finding the optimal packing (𝜋,𝜇) is 
NP-hard. Therefore, it is required to design heuristic algorithms or find less generalized 
optimization methods. This is consistent with known results for Lattice Surgery [9].

We have formulated a part of the optimization problem of defect braiding 
quantum circuits for fault-tolerant quantum computation on surface codes 
and showed that the computational complexity is NP-hard.

Background

Example of the optimization: 
The height is reduced from 3 to 2 by rearranging the qubits.

enough margin between gate 2&3
“𝑋$ and 𝑋% can be arranged into one row”

ℛ

𝜋: 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 → {𝐴, 𝐵, 𝐸, 𝐶, 𝐷}

Gates ℛ: 1 = 𝐵, 𝐶, 𝐷 2 = 𝐶,𝐷 3 = {𝐴, 𝐵}
Partial order: 2 ≻ 1, 3 ≻ 1

Not gadget Copy gadget
Bending gadget Fixing gadget

Multi-qubit gates are necessary to realize universal gate sets in FTQC. Defect 
braiding is known as a method to realize CX gates on surface codes. First, a 
pair of defects is prepared on the surface code as shown in the figure, which 
corresponds to a logical qubit. Defect braiding is an operation to realize logical 
CX gates by moving them so that they wrap around each other.

Let 𝑛 = {1,2, … , 𝑛} denote the set of 𝑛 logical qubits. We are given a family ℛ of 
gates, where each gate 𝑋 ∈ ℛ is a subset of 𝑛 . We are also given a partial order ⪰
on ℛ, which represents the order of operators on the same logical qubit.
Conditions
For a permutation 𝜋: 𝑛 → [𝑛] of logical qubits, we say that gates 𝑋!, … , 𝑋" ∈ ℛ can be 
arranged into one row with respect to 𝜋 if, for any distinct 𝑖, 𝑗 ∈ {1,2, … , 𝑙}, either

max 𝜋 𝑥 𝑥 ∈ 𝑋#} + 1 < min 𝜋 𝑥$ 𝑥$ ∈ 𝑋%}
or

max 𝜋 𝑥$ 𝑥$ ∈ 𝑋%} + 1 < min 𝜋 𝑥 𝑥 ∈ 𝑋#}
holds. This condition means that any pair of gates in the same row have no overlap, 

and furthermore there is a margin between them. 

𝜋

We say that the family ℛ of gates can be packed with height ℎ ∈ ℤ& according to a 
partial order ⪰ if there exists a pair (𝜋, 𝜇) of a permutation 𝜋: 𝑛 → [𝑛] and a function 
𝜇:ℛ → ℎ satisfying the following two conditions: 
1. (the horizontal condition) For each 𝑖 ∈ [ℎ], the gates in {𝑋 | 𝜇(𝑋) = 𝑖} can be 
arranged into one row with respect to a permutation 𝜋 ∶ [𝑛] → [𝑛], and 
2. (the vertical condition) For any two distinct gates 𝑋, 𝑋′ ∈ ℛ, if 𝑋 ∩ 𝑋$ ≠ ∅ and 
𝑋 ≻ 𝑋′, then 𝜇(𝑋) > 𝜇(𝑋′). 

For a packing (𝜋, 𝜇), we call 𝜇(𝑋) the level of 𝑋 ∈ 𝑅. 
Here we define our problem. 

Min-Braiding Problem
Given a set ℛ of gates, a partial order ⪰ on ℛ, and a positive integer ℎ, output Yes if ℛ
can be packed according to ⪰ with height at most ℎ. 

Theorem Min-Braiding is an NP-Complete problem. 
Summary of the proof
• Assume there exists an algorithm 𝒜 which can solve Min-Braiding efficiently. 
• For any instance of a known hard problem 𝒫, Min-Braiding is at least more difficult 

than 𝒫 if it can be solved using 𝒜.
One widely known difficult (NP-complete) problem is the 3SAT.

Definition (3SAT) Given 3-CNF boolean formula 𝜙, output Yes if there exists an 
interpretation that satisfies 𝜙.
Example:
𝜙 = (¬𝑥! ∨ 𝑥') ∧ (𝑥' ∨ 𝑥() ∧ (𝑥' ∨ 𝑥( ∨ ¬𝑥))
clause: c! = ¬𝑥! ∨ 𝑥' , 𝑐' = 𝑥' ∨ 𝑥( , 𝑐( = (𝑥' ∨ 𝑥( ∨ ¬𝑥))
interpretation: 𝑥!, 𝑥', 𝑥(, 𝑥) = (0,0,1,0)

We use the polynomial reduction from a NP-Complete problem called PlanarRectLinear 
3SAT [7,8], which is a special case of 3SAT that can be drawn as a graph 𝐺(𝜙) satisfying 
the following:
1. Vertices in 𝐺(𝜙) corresponding to variables 𝑥 and clause 𝑐 are drawn by rectangles 

whose sides are parallel to axis 
2. Rectangles corresponding to variables are drawn on a horizontal line 
3. Vertical line segments represent attributions to clause and, and edges do not cross 

each other. 

Example: 𝐺(𝜙) of  𝜙 = ¬𝑥! ∨ 𝑥' ∧ 𝑥' ∨ 𝑥( ∧ 𝑥' ∨ 𝑥( ∨ ¬𝑥)

Using six different transformations, PlanarRectLinear 3SAT can be transformed into 
Min-Braiding in polynomial time.
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